11 research outputs found

    Facilitators and barriers to the implementation of a Mobile Health Wallet for pregnancy-related health care: A qualitative study of stakeholders’ perceptions in Madagascar

    Get PDF
    Financial barriers are a major obstacle to accessing maternal health care services in low-resource settings. In Madagascar, less than half of live births are attended by skilled health staff. Although mobile money-based savings and payment systems are often used to pay for a variety of services, including health care, data on the implications of a dedicated mobile money wallet restricted to health-related spending during pregnancy–a mobile health wallet (MHW)–are not well understood. In cooperation with the Madagascan Ministry of Health, this study aims to elicit the perceptions, experiences, and recommendations of key stakeholders in relation to a MHW amid a pilot study in 31 state-funded health care facilities. We conducted a two-stage qualitative study using semi-structured in-depth interviews with stakeholders (N = 21) representing the following groups: community representatives, health care providers, health officials and representatives from phone provider companies. Interviews were conducted in Atsimondrano and Renivohitra districts, between November and December of 2017. Data was coded thematically using inductive and deductive approaches, and found to align with a social ecological model. Key facilitators for successful implementation of the MHW, include (i) close collaboration with existing communal structures and (ii) creation of an incentive scheme to reward pregnant women to save. Key barriers to the application of the MHW in the study zone include (i) disruption of informal benefits for health care providers related to the current cash-based payment system, (ii) low mobile phone ownership, (iii) illiteracy among the target population, and (iv) failure of the MHW to overcome essential access barriers towards institutional health care services such as fear of unpredictable expenses. The MHW was perceived as a potential solution to reduce disparities in access to maternal health care. To ensure success of the MHW, direct demand-side and provider-side financial incentives merit consideration

    Refining Humane Endpoints in Mouse Models of Disease by Systematic Review and Machine Learning-Based Endpoint Definition

    Get PDF
    Ideally, humane endpoints allow for early termination of experiments by minimizing an animal’s discomfort, distress and pain, while ensuring that scientific objectives are reached. Yet, lack of commonly agreed methodology and heterogeneity of cut-off values published in the literature remain a challenge to the accurate determination and application of humane endpoints. With the aim to synthesize and appraise existing humane endpoint definitions for commonly used physiological parameters, we conducted a systematic review of mouse studies of acute and chronic disease models, which used body weight, temperature and/or sickness scores for endpoint definition. In the second part of the study, we used previously published and unpublished data on weight, temperature and sickness scores from mouse models of sepsis and stroke and applied machine learning algorithms to assess the usefulness of this method for parameter selection and endpoint definition across models. Studies were searched for in two electronic databases (MEDLINE/Pubmed and Embase). Out of 110 retrieved full-text manuscripts, 34 studies were included. We found large intra- and inter-model variance in humane endpoint determination and application due to varying animal models, lack of standardized experimental protocols and heterogeneity of performance metrics (part 1). Machine learning models trained with physiological data and sickness severity score or modified DeSimoni neuroscore identified animals with a high risk of death at an early time point in both mouse models of stroke (male: 93.2% at 72h post-treatment; female: 93.0% at 48h post-treatment) and sepsis (96.2% at 24h post-treatment), thus demonstrating generalizability in endpoint determination across models (part 2)

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Assessing the Effects of Cytoprotectants on Selective Neuronal Loss, Sensorimotor Deficit and Microglial Activation after Temporary Middle Cerebral Occlusion

    No full text
    Although early reperfusion after stroke salvages the still-viable ischemic tissue, peri-infarct selective neuronal loss (SNL) can cause sensorimotor deficits (SMD). We designed a longitudinal protocol to assess the effects of cytoprotectants on SMD, microglial activation (MA) and SNL, and specifically tested whether the KCa3.1-blocker TRAM-34 would prevent SNL. Spontaneously hypertensive rats underwent 15 min middle-cerebral artery occlusion and were randomized into control or treatment group, which received TRAM-34 intraperitoneally for 4 weeks starting 12 h after reperfusion. SMD was assessed longitudinally using the sticky-label test. MA was quantified at day 14 using in vivo [11C]-PK111195 positron emission tomography (PET), and again across the same regions-of-interest template by immunofluorescence together with SNL at day 28. SMD recovered significantly faster in the treated group (p = 0.004). On PET, MA was present in 5/6 rats in each group, with no significant between-group difference. On immunofluorescence, both SNL and MA were present in 5/6 control rats and 4/6 TRAM-34 rats, with a non-significantly lower degree of MA but a significantly (p = 0.009) lower degree of SNL in the treated group. These findings document the utility of our longitudinal protocol and suggest that TRAM-34 reduces SNL and hastens behavioural recovery without marked MA blocking at the assessed time-points

    Stage 1 Registered Report: Effect of deficient phagocytosis on neuronal survival and neurological outcome after temporary middle cerebral artery occlusion (tMCAo) [version 1; referees: 2 approved]

    No full text
    Stroke is a major cause of death and disability worldwide. In addition to neuronal death resulting directly from energy depletion due to lack of blood supply, inflammation and microglial activation following ischemic brain injury has been increasingly recognized to be a key contributor to the pathophysiology of cerebrovascular disease. However, our understanding of the cross talk between the ischemic brain and the immune system is limited. Recently, we demonstrated that following focal ischemia, death of mature viable neurons can be executed through phagocytosis by microglial cells or recruited macrophages, i.e. through phagoptosis. It was shown that inhibition of phagocytic signaling pathways following endothelin-1 induced focal cerebral ischemia leads to increased neuronal survival and neurological recovery. This suggests that inhibition of specific phagocytic pathways may prevent neuronal death during cerebral ischemia. To further explore this potential therapeutic target, we propose to assess the role of phagocytosis in an established model of temporary (45min) middle cerebral artery occlusion, and to evaluate neuronal survival and neurological recovery in mice with deficient phagocytosis

    Stage 1 Registered Report: Effect of deficient phagocytosis on neuronal survival and neurological outcome after temporary middle cerebral artery occlusion (tMCAo) [version 3; referees: 2 approved]

    No full text
    Stroke is a major cause of death and disability worldwide. In addition to neuronal death resulting directly from energy depletion due to lack of blood supply, inflammation and microglial activation following ischemic brain injury has been increasingly recognized to be a key contributor to the pathophysiology of cerebrovascular disease. However, our understanding of the cross talk between the ischemic brain and the immune system is limited. Recently, we demonstrated that following focal ischemia, death of mature viable neurons can be executed through phagocytosis by microglial cells or recruited macrophages, i.e. through phagoptosis. It was shown that inhibition of phagocytic signaling pathways following endothelin-1 induced focal cerebral ischemia leads to increased neuronal survival and neurological recovery. This suggests that inhibition of specific phagocytic pathways may prevent neuronal death during cerebral ischemia. To further explore this potential therapeutic target, we propose to assess the role of phagocytosis in an established model of temporary (45min) middle cerebral artery occlusion (tMCAo), and to evaluate neuronal survival and neurological recovery in mice with deficient phagocytosis. The primary outcome of this study will be forelimb function assessed with the staircase test. Secondary outcomes constitute Rotarod performance, stroke volume (quantified on MR imaging or brain sections, respectively), diffusion tensor imaging (DTI) connectome mapping, and histological analyses to measure neuronal and microglial densities, and phagocytic activity. Male mice aged 10-12 weeks will be used for experiments
    corecore